Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Discovery of salicyl benzoate UDP-glycosyltransferase, a central enzyme in poplar salicinoid phenolic glycoside biosynthesis.

Identifieur interne : 000475 ( Main/Exploration ); précédent : 000474; suivant : 000476

Discovery of salicyl benzoate UDP-glycosyltransferase, a central enzyme in poplar salicinoid phenolic glycoside biosynthesis.

Auteurs : Christin Fellenberg [Canada] ; Oliver Corea [Canada] ; Lok-Hang Yan [Canada] ; Finn Archinuk [Canada] ; Eerik-Mikael Piirtola [Canada, Finlande] ; Harley Gordon [Canada] ; Michael Reichelt [Allemagne] ; Wolfgang Brandt [Allemagne] ; Jeremy Wulff [Canada] ; Jürgen Ehlting [Canada] ; C. Peter Constabel [Canada]

Source :

RBID : pubmed:31736216

Abstract

The salicinoids are anti-herbivore phenolic glycosides unique to the Salicaceae (Populus and Salix). They consist of a salicyl alcohol glucoside core, which is usually further acylated with benzoic, cinnamic or phenolic acids. While salicinoid structures are well known, their biosynthesis remains enigmatic. Recently, two enzymes from poplar, salicyl alcohol benzoyl transferase and benzyl alcohol benzoyl transferase, were shown to catalyze the production of salicyl benzoate, a predicted potential intermediate in salicinoid biosynthesis. Here, we used transcriptomics and co-expression analysis with these two genes to identify two UDP-glucose-dependent glycosyltransferases (UGT71L1 and UGT78M1) as candidate enzymes in this pathway. Both recombinant enzymes accepted only salicyl benzoate, salicylaldehyde and 2-hydroxycinnamic acid as glucose acceptors. Knocking out the UGT71L1 gene by CRISPR/Cas9 in poplar hairy root cultures led to the complete loss of salicortin, tremulacin and tremuloidin, and a partial reduction of salicin content. This demonstrated that UGT71L1 is required for synthesis of the major salicinoids, and suggested that an additional route can lead to salicin. CRISPR/Cas9 knockouts for UGT78M1 were not successful, and its in vivo role thus remains to be determined. Although it has a similar substrate preference and predicted structure as UGT71L1, it appears not to contribute to the synthesis of salicortin, tremulacin and tremuloidin, at least in roots. The demonstration of UGT71L1 as an enzyme of salicinoid biosynthesis will open up new avenues for the elucidation of this pathway.

DOI: 10.1111/tpj.14615
PubMed: 31736216


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Discovery of salicyl benzoate UDP-glycosyltransferase, a central enzyme in poplar salicinoid phenolic glycoside biosynthesis.</title>
<author>
<name sortKey="Fellenberg, Christin" sort="Fellenberg, Christin" uniqKey="Fellenberg C" first="Christin" last="Fellenberg">Christin Fellenberg</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Forest Biology and Department of Biology, University of Victoria, Victoria, British Columbia, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Centre for Forest Biology and Department of Biology, University of Victoria, Victoria, British Columbia</wicri:regionArea>
<wicri:noRegion>British Columbia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Corea, Oliver" sort="Corea, Oliver" uniqKey="Corea O" first="Oliver" last="Corea">Oliver Corea</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Forest Biology and Department of Biology, University of Victoria, Victoria, British Columbia, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Centre for Forest Biology and Department of Biology, University of Victoria, Victoria, British Columbia</wicri:regionArea>
<wicri:noRegion>British Columbia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yan, Lok Hang" sort="Yan, Lok Hang" uniqKey="Yan L" first="Lok-Hang" last="Yan">Lok-Hang Yan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, University of Victoria, Victoria, British Columbia, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Chemistry, University of Victoria, Victoria, British Columbia</wicri:regionArea>
<wicri:noRegion>British Columbia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Archinuk, Finn" sort="Archinuk, Finn" uniqKey="Archinuk F" first="Finn" last="Archinuk">Finn Archinuk</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Forest Biology and Department of Biology, University of Victoria, Victoria, British Columbia, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Centre for Forest Biology and Department of Biology, University of Victoria, Victoria, British Columbia</wicri:regionArea>
<wicri:noRegion>British Columbia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Piirtola, Eerik Mikael" sort="Piirtola, Eerik Mikael" uniqKey="Piirtola E" first="Eerik-Mikael" last="Piirtola">Eerik-Mikael Piirtola</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Forest Biology and Department of Biology, University of Victoria, Victoria, British Columbia, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Centre for Forest Biology and Department of Biology, University of Victoria, Victoria, British Columbia</wicri:regionArea>
<wicri:noRegion>British Columbia</wicri:noRegion>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Chemistry, University of Turku, Turku, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Department of Chemistry, University of Turku, Turku</wicri:regionArea>
<placeName>
<settlement type="city">Turku</settlement>
<region type="région" nuts="2">Finlande occidentale</region>
</placeName>
<orgName type="university">Université de Turku</orgName>
</affiliation>
</author>
<author>
<name sortKey="Gordon, Harley" sort="Gordon, Harley" uniqKey="Gordon H" first="Harley" last="Gordon">Harley Gordon</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Forest Biology and Department of Biology, University of Victoria, Victoria, British Columbia, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Centre for Forest Biology and Department of Biology, University of Victoria, Victoria, British Columbia</wicri:regionArea>
<wicri:noRegion>British Columbia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Reichelt, Michael" sort="Reichelt, Michael" uniqKey="Reichelt M" first="Michael" last="Reichelt">Michael Reichelt</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena</wicri:regionArea>
<wicri:noRegion>Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Brandt, Wolfgang" sort="Brandt, Wolfgang" uniqKey="Brandt W" first="Wolfgang" last="Brandt">Wolfgang Brandt</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Bioorganic Chemistry, Leibniz Institute for Plant Biochemistry, Halle, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Bioorganic Chemistry, Leibniz Institute for Plant Biochemistry, Halle</wicri:regionArea>
<wicri:noRegion>Halle</wicri:noRegion>
<wicri:noRegion>Halle</wicri:noRegion>
<wicri:noRegion>Halle</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wulff, Jeremy" sort="Wulff, Jeremy" uniqKey="Wulff J" first="Jeremy" last="Wulff">Jeremy Wulff</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, University of Victoria, Victoria, British Columbia, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Chemistry, University of Victoria, Victoria, British Columbia</wicri:regionArea>
<wicri:noRegion>British Columbia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ehlting, Jurgen" sort="Ehlting, Jurgen" uniqKey="Ehlting J" first="Jürgen" last="Ehlting">Jürgen Ehlting</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Forest Biology and Department of Biology, University of Victoria, Victoria, British Columbia, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Centre for Forest Biology and Department of Biology, University of Victoria, Victoria, British Columbia</wicri:regionArea>
<wicri:noRegion>British Columbia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Peter Constabel, C" sort="Peter Constabel, C" uniqKey="Peter Constabel C" first="C" last="Peter Constabel">C. Peter Constabel</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Forest Biology and Department of Biology, University of Victoria, Victoria, British Columbia, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Centre for Forest Biology and Department of Biology, University of Victoria, Victoria, British Columbia</wicri:regionArea>
<wicri:noRegion>British Columbia</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31736216</idno>
<idno type="pmid">31736216</idno>
<idno type="doi">10.1111/tpj.14615</idno>
<idno type="wicri:Area/Main/Corpus">000609</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000609</idno>
<idno type="wicri:Area/Main/Curation">000609</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000609</idno>
<idno type="wicri:Area/Main/Exploration">000609</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Discovery of salicyl benzoate UDP-glycosyltransferase, a central enzyme in poplar salicinoid phenolic glycoside biosynthesis.</title>
<author>
<name sortKey="Fellenberg, Christin" sort="Fellenberg, Christin" uniqKey="Fellenberg C" first="Christin" last="Fellenberg">Christin Fellenberg</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Forest Biology and Department of Biology, University of Victoria, Victoria, British Columbia, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Centre for Forest Biology and Department of Biology, University of Victoria, Victoria, British Columbia</wicri:regionArea>
<wicri:noRegion>British Columbia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Corea, Oliver" sort="Corea, Oliver" uniqKey="Corea O" first="Oliver" last="Corea">Oliver Corea</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Forest Biology and Department of Biology, University of Victoria, Victoria, British Columbia, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Centre for Forest Biology and Department of Biology, University of Victoria, Victoria, British Columbia</wicri:regionArea>
<wicri:noRegion>British Columbia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yan, Lok Hang" sort="Yan, Lok Hang" uniqKey="Yan L" first="Lok-Hang" last="Yan">Lok-Hang Yan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, University of Victoria, Victoria, British Columbia, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Chemistry, University of Victoria, Victoria, British Columbia</wicri:regionArea>
<wicri:noRegion>British Columbia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Archinuk, Finn" sort="Archinuk, Finn" uniqKey="Archinuk F" first="Finn" last="Archinuk">Finn Archinuk</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Forest Biology and Department of Biology, University of Victoria, Victoria, British Columbia, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Centre for Forest Biology and Department of Biology, University of Victoria, Victoria, British Columbia</wicri:regionArea>
<wicri:noRegion>British Columbia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Piirtola, Eerik Mikael" sort="Piirtola, Eerik Mikael" uniqKey="Piirtola E" first="Eerik-Mikael" last="Piirtola">Eerik-Mikael Piirtola</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Forest Biology and Department of Biology, University of Victoria, Victoria, British Columbia, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Centre for Forest Biology and Department of Biology, University of Victoria, Victoria, British Columbia</wicri:regionArea>
<wicri:noRegion>British Columbia</wicri:noRegion>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Chemistry, University of Turku, Turku, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Department of Chemistry, University of Turku, Turku</wicri:regionArea>
<placeName>
<settlement type="city">Turku</settlement>
<region type="région" nuts="2">Finlande occidentale</region>
</placeName>
<orgName type="university">Université de Turku</orgName>
</affiliation>
</author>
<author>
<name sortKey="Gordon, Harley" sort="Gordon, Harley" uniqKey="Gordon H" first="Harley" last="Gordon">Harley Gordon</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Forest Biology and Department of Biology, University of Victoria, Victoria, British Columbia, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Centre for Forest Biology and Department of Biology, University of Victoria, Victoria, British Columbia</wicri:regionArea>
<wicri:noRegion>British Columbia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Reichelt, Michael" sort="Reichelt, Michael" uniqKey="Reichelt M" first="Michael" last="Reichelt">Michael Reichelt</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena</wicri:regionArea>
<wicri:noRegion>Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Brandt, Wolfgang" sort="Brandt, Wolfgang" uniqKey="Brandt W" first="Wolfgang" last="Brandt">Wolfgang Brandt</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Bioorganic Chemistry, Leibniz Institute for Plant Biochemistry, Halle, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Bioorganic Chemistry, Leibniz Institute for Plant Biochemistry, Halle</wicri:regionArea>
<wicri:noRegion>Halle</wicri:noRegion>
<wicri:noRegion>Halle</wicri:noRegion>
<wicri:noRegion>Halle</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wulff, Jeremy" sort="Wulff, Jeremy" uniqKey="Wulff J" first="Jeremy" last="Wulff">Jeremy Wulff</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, University of Victoria, Victoria, British Columbia, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Chemistry, University of Victoria, Victoria, British Columbia</wicri:regionArea>
<wicri:noRegion>British Columbia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ehlting, Jurgen" sort="Ehlting, Jurgen" uniqKey="Ehlting J" first="Jürgen" last="Ehlting">Jürgen Ehlting</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Forest Biology and Department of Biology, University of Victoria, Victoria, British Columbia, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Centre for Forest Biology and Department of Biology, University of Victoria, Victoria, British Columbia</wicri:regionArea>
<wicri:noRegion>British Columbia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Peter Constabel, C" sort="Peter Constabel, C" uniqKey="Peter Constabel C" first="C" last="Peter Constabel">C. Peter Constabel</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Forest Biology and Department of Biology, University of Victoria, Victoria, British Columbia, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Centre for Forest Biology and Department of Biology, University of Victoria, Victoria, British Columbia</wicri:regionArea>
<wicri:noRegion>British Columbia</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Plant journal : for cell and molecular biology</title>
<idno type="eISSN">1365-313X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The salicinoids are anti-herbivore phenolic glycosides unique to the Salicaceae (Populus and Salix). They consist of a salicyl alcohol glucoside core, which is usually further acylated with benzoic, cinnamic or phenolic acids. While salicinoid structures are well known, their biosynthesis remains enigmatic. Recently, two enzymes from poplar, salicyl alcohol benzoyl transferase and benzyl alcohol benzoyl transferase, were shown to catalyze the production of salicyl benzoate, a predicted potential intermediate in salicinoid biosynthesis. Here, we used transcriptomics and co-expression analysis with these two genes to identify two UDP-glucose-dependent glycosyltransferases (UGT71L1 and UGT78M1) as candidate enzymes in this pathway. Both recombinant enzymes accepted only salicyl benzoate, salicylaldehyde and 2-hydroxycinnamic acid as glucose acceptors. Knocking out the UGT71L1 gene by CRISPR/Cas9 in poplar hairy root cultures led to the complete loss of salicortin, tremulacin and tremuloidin, and a partial reduction of salicin content. This demonstrated that UGT71L1 is required for synthesis of the major salicinoids, and suggested that an additional route can lead to salicin. CRISPR/Cas9 knockouts for UGT78M1 were not successful, and its in vivo role thus remains to be determined. Although it has a similar substrate preference and predicted structure as UGT71L1, it appears not to contribute to the synthesis of salicortin, tremulacin and tremuloidin, at least in roots. The demonstration of UGT71L1 as an enzyme of salicinoid biosynthesis will open up new avenues for the elucidation of this pathway.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">31736216</PMID>
<DateRevised>
<Year>2020</Year>
<Month>06</Month>
<Day>17</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-313X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>102</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2020</Year>
<Month>04</Month>
</PubDate>
</JournalIssue>
<Title>The Plant journal : for cell and molecular biology</Title>
<ISOAbbreviation>Plant J</ISOAbbreviation>
</Journal>
<ArticleTitle>Discovery of salicyl benzoate UDP-glycosyltransferase, a central enzyme in poplar salicinoid phenolic glycoside biosynthesis.</ArticleTitle>
<Pagination>
<MedlinePgn>99-115</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/tpj.14615</ELocationID>
<Abstract>
<AbstractText>The salicinoids are anti-herbivore phenolic glycosides unique to the Salicaceae (Populus and Salix). They consist of a salicyl alcohol glucoside core, which is usually further acylated with benzoic, cinnamic or phenolic acids. While salicinoid structures are well known, their biosynthesis remains enigmatic. Recently, two enzymes from poplar, salicyl alcohol benzoyl transferase and benzyl alcohol benzoyl transferase, were shown to catalyze the production of salicyl benzoate, a predicted potential intermediate in salicinoid biosynthesis. Here, we used transcriptomics and co-expression analysis with these two genes to identify two UDP-glucose-dependent glycosyltransferases (UGT71L1 and UGT78M1) as candidate enzymes in this pathway. Both recombinant enzymes accepted only salicyl benzoate, salicylaldehyde and 2-hydroxycinnamic acid as glucose acceptors. Knocking out the UGT71L1 gene by CRISPR/Cas9 in poplar hairy root cultures led to the complete loss of salicortin, tremulacin and tremuloidin, and a partial reduction of salicin content. This demonstrated that UGT71L1 is required for synthesis of the major salicinoids, and suggested that an additional route can lead to salicin. CRISPR/Cas9 knockouts for UGT78M1 were not successful, and its in vivo role thus remains to be determined. Although it has a similar substrate preference and predicted structure as UGT71L1, it appears not to contribute to the synthesis of salicortin, tremulacin and tremuloidin, at least in roots. The demonstration of UGT71L1 as an enzyme of salicinoid biosynthesis will open up new avenues for the elucidation of this pathway.</AbstractText>
<CopyrightInformation>© 2019 The Authors The Plant Journal © 2019 John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Fellenberg</LastName>
<ForeName>Christin</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Centre for Forest Biology and Department of Biology, University of Victoria, Victoria, British Columbia, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Corea</LastName>
<ForeName>Oliver</ForeName>
<Initials>O</Initials>
<AffiliationInfo>
<Affiliation>Centre for Forest Biology and Department of Biology, University of Victoria, Victoria, British Columbia, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yan</LastName>
<ForeName>Lok-Hang</ForeName>
<Initials>LH</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, University of Victoria, Victoria, British Columbia, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Archinuk</LastName>
<ForeName>Finn</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Centre for Forest Biology and Department of Biology, University of Victoria, Victoria, British Columbia, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Piirtola</LastName>
<ForeName>Eerik-Mikael</ForeName>
<Initials>EM</Initials>
<AffiliationInfo>
<Affiliation>Centre for Forest Biology and Department of Biology, University of Victoria, Victoria, British Columbia, Canada.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Chemistry, University of Turku, Turku, Finland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gordon</LastName>
<ForeName>Harley</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Centre for Forest Biology and Department of Biology, University of Victoria, Victoria, British Columbia, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Reichelt</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Brandt</LastName>
<ForeName>Wolfgang</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Department of Bioorganic Chemistry, Leibniz Institute for Plant Biochemistry, Halle, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wulff</LastName>
<ForeName>Jeremy</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, University of Victoria, Victoria, British Columbia, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ehlting</LastName>
<ForeName>Jürgen</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Centre for Forest Biology and Department of Biology, University of Victoria, Victoria, British Columbia, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Peter Constabel</LastName>
<ForeName>C</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Centre for Forest Biology and Department of Biology, University of Victoria, Victoria, British Columbia, Canada.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>02</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Plant J</MedlineTA>
<NlmUniqueID>9207397</NlmUniqueID>
<ISSNLinking>0960-7412</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">CRISPR/Cas9</Keyword>
<Keyword MajorTopicYN="Y">Salicaceae</Keyword>
<Keyword MajorTopicYN="Y">phenolic glycosides</Keyword>
<Keyword MajorTopicYN="Y">salicin</Keyword>
<Keyword MajorTopicYN="Y">salicortin</Keyword>
<Keyword MajorTopicYN="Y">tremulacin</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>07</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>09</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>10</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>11</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>11</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>11</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31736216</ArticleId>
<ArticleId IdType="doi">10.1111/tpj.14615</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Achnine, L., Huhman, D.V., Farag, M.A., Sumner, L.W., Blount, J.W. and Dixon, R.A. (2005) Genomics-based selection and functional characterization of triterpene glycosyltransferases from the model legume Medicago truncatula. Plant J. 41, 875-887.</Citation>
</Reference>
<Reference>
<Citation>Babst, B.A., Harding, S.A. and Tsai, C.J. (2010) Biosynthesis of phenolic glycosides from phenylpropanoid and benzenoid precursors in Populus. J. Chem. Ecol. 36, 286-297.</Citation>
</Reference>
<Reference>
<Citation>Babst, B.A., Chen, H.Y., Wang, H.Q., Payyavula, R.S., Thomas, T.P., Harding, S.A. and Tsai, C.J. (2014) Stress-responsive hydroxycinnamate glycosyltransferase modulates phenylpropanoid metabolism in Populus. J. Exp. Bot. 65, 4191-4200.</Citation>
</Reference>
<Reference>
<Citation>Boeckler, G.A., Gershenzon, J. and Unsicker, S.B. (2011) Phenolic glycosides of the Salicaceae and their role as anti-herbivore defenses. Phytochemistry, 72, 1497-1509.</Citation>
</Reference>
<Reference>
<Citation>Boeckler, G.A., Gershenzon, J. and Unsicker, S.B. (2013) Gypsy moth caterpillar feeding has only a marginal impact on phenolic compounds in old-growth black poplar. J. Chem. Ecol. 39, 1301-1312.</Citation>
</Reference>
<Reference>
<Citation>Bowles, D., Lim, E.K., Poppenberger, B. and Vaistij, F.E. (2006) Glycosyltransferases of lipophilic small molecules. Annu. Rev. Plant Biol. 57, 567-597.</Citation>
</Reference>
<Reference>
<Citation>Brazier-Hicks, M., Offen, W.A., Gershater, M.C., Revett, T.J., Lim, E.K., Bowles, D.J., Davies, G.J. and Edwards, R. (2007) Characterization and engineering of the bifunctional N- and O-glucosyltransferase involved in xenobiotic metabolism in plants. Proc. Natl Acad. Sci. USA, 104, 20 238-20 243.</Citation>
</Reference>
<Reference>
<Citation>Brinkman, E.K., Chen, T., Amendola, M. and van Steensel, B. (2014) Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res. 42, e168.</Citation>
</Reference>
<Reference>
<Citation>Caputi, L., Malnoy, M., Goremykin, V., Nikiforova, S. and Martens, S. (2012) A genome-wide phylogenetic reconstruction of family 1 UDP-glycosyltransferases revealed the expansion of the family during the adaptation of plants to life on land. Plant J. 69, 1030-1042.</Citation>
</Reference>
<Reference>
<Citation>Chedgy, R.J., Köllner, T.G. and Constabel, C.P. (2015) Functional characterization of two acyltransferases from Populus trichocarpa capable of synthesizing benzyl benzoate and salicyl benzoate, potential intermediates in salicinoid phenolic glycoside biosynthesis. Phytochemistry, 113, 149-159.</Citation>
</Reference>
<Reference>
<Citation>Clausen, T.P., Keller, J.W. and Reichardt, P.B. (1990) Aglycone fragmentation accompanies ß-glucosidase catalyzed hydrolysis of salicortin, a naturally-ocurring phenol glycoside. Tetrahedron Lett. 31, 4537-4538.</Citation>
</Reference>
<Reference>
<Citation>Diner, B., Berteaux, D., Fyles, J. and Lindroth, R.L. (2009) Behavioral archives link the chemistry and clonal structure of trembling aspen to the food choice of North American porcupine. Oecologia, 160, 687-695.</Citation>
</Reference>
<Reference>
<Citation>Donaldson, J.R., Stevens, M.T., Barnhill, H.R. and Lindroth, R.L. (2006) Age-related shifts in leaf chemistry of clonal aspen (Populus tremuloides). J. Chem. Ecol. 32, 1415-1429.</Citation>
</Reference>
<Reference>
<Citation>Elorriaga, E., Klocko, A.L., Ma, C. and Strauss, S.H. (2018) Variation in mutation spectra among CRISPR/Cas9 mutagenized poplars. Front. Plant Sci. 9, 594.</Citation>
</Reference>
<Reference>
<Citation>Gachon, C.M.M., Langlois-Meurinne, M. and Saindrenan, P. (2005) Plant secondary metabolism glycosyltransferases: the emerging functional analysis. Trends Plant Sci. 10, 542-549.</Citation>
</Reference>
<Reference>
<Citation>He, X.Z., Wang, X.Q. and Dixon, R.A. (2006) Mutational analysis of the Medicago glycosyltransferase UGT71G1 reveals residues that control regioselectivity for (Iso) flavonoid glycosylation. J. Biol. Chem. 281, 34 441-34 447.</Citation>
</Reference>
<Reference>
<Citation>Hemming, J.D.C. and Lindroth, R.L. (1995) Intraspecific variation in aspen phytochemistry − effects on performance of gypsy moths and forest tent caterpillars. Oecologia, 103, 79-88.</Citation>
</Reference>
<Reference>
<Citation>Hwang, S.Y. and Lindroth, R.L. (1997) Clonal variation in foliar chemistry of aspen: effects on gypsy moths and forest tent caterpillars. Oecologia, 111, 99-108.</Citation>
</Reference>
<Reference>
<Citation>Jacobs, T.B., LaFayette, P.R., Schmitz, R.J. and Parrott, W.A. (2015) Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol. 15, 16.</Citation>
</Reference>
<Reference>
<Citation>James, A.M., Ma, D.W., Mellway, R. et al. (2017) Poplar MYB115 and MYB134 transcription factors regulate proanthocyanidin synthesis and structure. Plant Physiol. 174, 154-171.</Citation>
</Reference>
<Reference>
<Citation>Julkunen-Tiitto, R. and Meier, B. (1992) The enzymatic decomposition of salicin and its derivatives obtained from Salicaceae species. J. Nat. Prod. 55, 1204-1212.</Citation>
</Reference>
<Reference>
<Citation>Keefover-Ring, K., Ahnlund, M., Abreu, I.N., Jansson, S., Moritz, T. and Albrectsen, B.R. (2014) No evidence of geographical structure of salicinoid chemotypes within Populus tremula. PLoS ONE, 9, e107189.</Citation>
</Reference>
<Reference>
<Citation>Kelly, M.T. and Curry, J.P. (1991) The influence of phenolic compounds on the suitability of three Salix species as hosts for the willow beetle Phratora vulgatissima. Entomol. Exp. Appl. 61, 25-32.</Citation>
</Reference>
<Reference>
<Citation>Krieger, E. and Vriend, G. (2014) YASARA View-molecular graphics for all devices-from smartphones to workstations. Bioinformatics, 30, 2981-2982.</Citation>
</Reference>
<Reference>
<Citation>Krieger, E. and Vriend, G. (2015) New ways to boost molecular dynamics simulations. J. Comp. Chem. 36, 996-1007.</Citation>
</Reference>
<Reference>
<Citation>Krieger, E., Joo, K., Lee, J., Lee, J., Raman, S., Thompson, J., Tyka, M., Baker, D. and Karplus, K. (2009) Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: four approaches that performed well in CASP8. Prot. Struct. Funct. Bioinf. 77, 114-122.</Citation>
</Reference>
<Reference>
<Citation>Laskowski, R.A., Macarthur, M.W., Moss, D.S. and Thornton, J.M. (1993) PROCHECK − A program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283-291.</Citation>
</Reference>
<Reference>
<Citation>Lebrasseur, N., Gagnepain, J., Ozanne-Beaudenon, A., Léger, J.-M. and Quideau, S. (2007) Efficient access to orthoquinols and their [4+2] cyclodimers via SIBX-mediated hydroxylative phenol dearomatization. J. Appl. Chem. 72, 6280-6283.</Citation>
</Reference>
<Reference>
<Citation>Lee, J.C. and Choi, Y. (1998) An improved method for preparation of carboxylic esters using CsF-Celite/alkyl halide/CH3CN combination. Synth. Comm. 28, 2021-2026.</Citation>
</Reference>
<Reference>
<Citation>Lim, E.K., Doucet, C.J., Li, Y., Elias, L., Worrall, D., Spencer, S.P., Ross, J. and Bowles, D.J. (2002) The activity of Arabidopsis glycosyltransferases toward salicylic acid, 4-hydroxybenzoic acid, and other benzoates. J. Biol. Chem. 277, 586-592.</Citation>
</Reference>
<Reference>
<Citation>Lindroth, R.L. and Hwang, S.-Y. (1996) Diversity, redundancy, and multiplicity in chemical defense systems of aspen. In Phytochemical Diversity and Redundancy in Ecological Interactions (Romeo, J.T., Saunders, J.A. and Barbosa, P. eds.). New York, NY: Plenum, pp. 25-56.</Citation>
</Reference>
<Reference>
<Citation>Ma, D.W., Reichelt, M., Yoshida, K., Gershenzon, J. and Constabel, C.P. (2018) Two R2R3-MYB proteins are broad repressors of flavonoid and phenylpropanoid metabolism in poplar. Plant J. 96, 949-965.</Citation>
</Reference>
<Reference>
<Citation>Mackenzie, P.I., Owens, I.S., Burchell, B. et al. (1997) The UDP glycosyltransferase gene superfamily: recommended nomenclature update based on evolutionary divergence. Pharmacogenetics, 7, 255-269.</Citation>
</Reference>
<Reference>
<Citation>Martineau, L.C., Herve, J., Muhamad, A., Saleem, A., Harris, C.S., Arnason, J.T. and Haddad, P.S. (2010) Anti-adipogenic activities of Alnus incana and Populus balsamifera bark extracts, Part I: sites and mechanisms of action. Planta Med. 76, 1439-1446.</Citation>
</Reference>
<Reference>
<Citation>McKown, A.D., Klapste, J., Guy, R.D., Corea, O.R.A., Fritsche, S., Ehlting, J., El-Kassaby, Y.A. and Mansfield, S.D. (2019) A role for SPEECHLESS in the integration of leaf stomatal patterning with the growth vs. disease trade-off in poplar. New Phytol. 223, 1888-1903.</Citation>
</Reference>
<Reference>
<Citation>Miettinen, K., Dong, L.M., Navrot, N. et al. (2014) The seco-iridoid pathway from Catharanthus roseus. Nature Comm. 5, 3606.</Citation>
</Reference>
<Reference>
<Citation>Modolo, L.V., Li, L.N., Pan, H.Y., Blount, J.W., Dixon, R.A. and Wang, X.Q. (2009) Crystal structures of glycosyltransferase UGT78G1 reveal the molecular basis for glycosylation and deglycosylation of (iso)flavonoids. J. Mol. Biol. 392, 1292-1302.</Citation>
</Reference>
<Reference>
<Citation>Nieddu, G., De Luca, L. and Giacomelli, G. (2008) A chemoselective, easy bromination of (hydroxymethyl)phenols. Synthesis, 3937-3940.</Citation>
</Reference>
<Reference>
<Citation>Osmani, S.A., Bak, S. and Moller, B.L. (2009) Substrate specificity of plant UDP-dependent glycosyltransferases predicted from crystal structures and homology modeling. Phytochemistry, 70, 325-347.</Citation>
</Reference>
<Reference>
<Citation>Pasteels, J.M., Rowell-Rahier, M., Braekman, J.C. and Dupont, A. (1983) Salicin from host plant as precursor of salicylaldehyde in defensive secretion of Chrysomeline larvae. Physiol. Entomol. 8, 307-314.</Citation>
</Reference>
<Reference>
<Citation>Quandt, H.J., Pühler, A. and Broer, I. (1993) Transgenic root-nodules of Vicia hirsuta − a fast and efficient system for the study of gene-expression in indeterminate-type nodules. Mol. Plant Microbe. Interact. 6, 699-706.</Citation>
</Reference>
<Reference>
<Citation>Rehill, B.J., Whitham, T.G., Martinsen, G.D., Schweitzer, J.A., Bailey, J.K. and Lindroth, R.L. (2006) Developmental trajectories in cottonwood phytochemistry. J. Chem. Ecol. 32, 2269-2285.</Citation>
</Reference>
<Reference>
<Citation>Ross, J., Li, Y., Lim, E. and Bowles, D.J. (2001) Higher plant glycosyltransferases. Genome Biol. 2(3004), 1.</Citation>
</Reference>
<Reference>
<Citation>Sippl, M.J. (1990) Calculation of conformational ensembles from potentials of mean force − an approach to the knowledge-based prediction of local structures in globular-proteins. J. Mol. Biol. 213, 859-883.</Citation>
</Reference>
<Reference>
<Citation>Sippl, M.J. (1993) Recognition of errors in 3-dimensional structures of proteins. Proteins Struct. Funct. Genet. 17, 355-362.</Citation>
</Reference>
<Reference>
<Citation>Sundell, D., Mannapperuma, C., Netotea, S., Delhomme, N., Lin, Y., Sjödin, A., Van de Peer, Y., Jansson, S., Hvidsten, T.R. and Street, N.R. (2015) The plant genome integrative explorer resource: PlantGenIE.org. New Phytol. 208, 1149-1156.</Citation>
</Reference>
<Reference>
<Citation>Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molec. Biol. Evol. 28, 2731-2739.</Citation>
</Reference>
<Reference>
<Citation>Tsai, C.J., Guo, W., Babst, B. et al. (2011) Salicylate metabolism in Populus. BMC Proc. 5(Suppl. 7: I9). https://doi.org/10.1186/1753-6561-5-S7-I9</Citation>
</Reference>
<Reference>
<Citation>Veljanovski, V. and Constabel, C.P. (2013) Molecular cloning and biochemical characterization of two UDP-glycosyltransferases from poplar. Phytochemistry, 91, 148-157.</Citation>
</Reference>
<Reference>
<Citation>Widhalm, J.R. and Dudareva, N. (2015) A familiar ring to it: biosynthesis of plant benzoic acids. Mol. Plant, 8, 83-97.</Citation>
</Reference>
<Reference>
<Citation>Yonekura-Sakakibara, K. and Hanada, K. (2011) An evolutionary view of functional diversity in family 1 glycosyltransferases. Plant J. 66, 182-193.</Citation>
</Reference>
<Reference>
<Citation>Yoshida, K., Ma, D.W. and Constabel, C.P. (2015) The MYB182 protein down-regulates proanthocyanidin and anthocyanin biosynthesis in poplar by repressing both structural and regulatory flavonoid genes. Plant Physiol. 167, 693-710.</Citation>
</Reference>
<Reference>
<Citation>Zenk, M.H. (1967) Pathways of salicyl alcohol and salicin formation in Salix purpurea L. Phytochemistry, 6, 245-252.</Citation>
</Reference>
<Reference>
<Citation>Zhou, X.H., Jacobs, T.B., Xue, L.J., Harding, S.A. and Tsai, C.J. (2015) Exploiting SNPs for biallelic CRISPR mutations in the outcrossing woody perennial Populus reveals 4-coumarate: CoA ligase specificity and redundancy. New Phytol. 208, 298-301.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
<li>Canada</li>
<li>Finlande</li>
</country>
<region>
<li>Finlande occidentale</li>
</region>
<settlement>
<li>Turku</li>
</settlement>
<orgName>
<li>Université de Turku</li>
</orgName>
</list>
<tree>
<country name="Canada">
<noRegion>
<name sortKey="Fellenberg, Christin" sort="Fellenberg, Christin" uniqKey="Fellenberg C" first="Christin" last="Fellenberg">Christin Fellenberg</name>
</noRegion>
<name sortKey="Archinuk, Finn" sort="Archinuk, Finn" uniqKey="Archinuk F" first="Finn" last="Archinuk">Finn Archinuk</name>
<name sortKey="Corea, Oliver" sort="Corea, Oliver" uniqKey="Corea O" first="Oliver" last="Corea">Oliver Corea</name>
<name sortKey="Ehlting, Jurgen" sort="Ehlting, Jurgen" uniqKey="Ehlting J" first="Jürgen" last="Ehlting">Jürgen Ehlting</name>
<name sortKey="Gordon, Harley" sort="Gordon, Harley" uniqKey="Gordon H" first="Harley" last="Gordon">Harley Gordon</name>
<name sortKey="Peter Constabel, C" sort="Peter Constabel, C" uniqKey="Peter Constabel C" first="C" last="Peter Constabel">C. Peter Constabel</name>
<name sortKey="Piirtola, Eerik Mikael" sort="Piirtola, Eerik Mikael" uniqKey="Piirtola E" first="Eerik-Mikael" last="Piirtola">Eerik-Mikael Piirtola</name>
<name sortKey="Wulff, Jeremy" sort="Wulff, Jeremy" uniqKey="Wulff J" first="Jeremy" last="Wulff">Jeremy Wulff</name>
<name sortKey="Yan, Lok Hang" sort="Yan, Lok Hang" uniqKey="Yan L" first="Lok-Hang" last="Yan">Lok-Hang Yan</name>
</country>
<country name="Finlande">
<region name="Finlande occidentale">
<name sortKey="Piirtola, Eerik Mikael" sort="Piirtola, Eerik Mikael" uniqKey="Piirtola E" first="Eerik-Mikael" last="Piirtola">Eerik-Mikael Piirtola</name>
</region>
</country>
<country name="Allemagne">
<noRegion>
<name sortKey="Reichelt, Michael" sort="Reichelt, Michael" uniqKey="Reichelt M" first="Michael" last="Reichelt">Michael Reichelt</name>
</noRegion>
<name sortKey="Brandt, Wolfgang" sort="Brandt, Wolfgang" uniqKey="Brandt W" first="Wolfgang" last="Brandt">Wolfgang Brandt</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000475 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000475 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31736216
   |texte=   Discovery of salicyl benzoate UDP-glycosyltransferase, a central enzyme in poplar salicinoid phenolic glycoside biosynthesis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31736216" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020